
Paper Sharing:

Tensor Data Platform & Deep Lake

Rui LIN

12 July, 2023

1 Basic Concepts

1. Relational Database Engine

it is also known as the Query Processor, and is responsible for parsing,
which is the activity in which the user input (high-level language) is con-
verted to a machine-understandable code (low-level language).

Relational databases are tools for storing various types of information
that are related to each other in some way. Data engineers build and
design relational databases (and other data management systems) to assist
organizations in collecting, storing, and analyzing data.

2. DBMS

A Database Management System (DBMS) is software for storing and re-
trieving users’ data while considering appropriate security measures. It
consists of a group of programs that manipulate the database. The DBMS
accepts the request for data from an application and instructs the operat-
ing system to provide the specific data. In large systems, a DBMS helps
users and other third-party software store and retrieve data. DBMS allows
users to create their own databases as per their requirements.

3. Columnar Database

A columnar database is a database management system (DBMS) that
stores data in columns rather than in rows as relational DBMSs do. The
main differences between a columnar database and a traditional row-
oriented database are centered around performance, storage necessities
and schema modifying techniques.

4. Metadata

Metadata is data that describes other data. In the context of a relational
database, metadata is the data that describes the structure of the database
itself. It provides information about the tables, columns, and relationships

1

LIN Rui 

ruilin0212@gmail.com 

LIN Rui 

ruilin0212@gmail.com 

LIN Rui 

ruilin0212@gmail.com 

LIN Rui 

ruilin0212@gmail.com 

LIN Rui 

ruilin0212@gmail.com 

LIN Rui 

ruilin0212@gmail.com 

LIN Rui 

ruilin0212@gmail.com



between them. Metadata can also include information about the database
schema, such as constraints and indexes.

Metadata can be stored in various formats such as string, integer, date/time,
etc. depending on the type of data it describes. For example, the data
type for a column name would typically be a string, while the data type
for a date/time constraint would be a date/time value.

5. Physical Plan

A physical plan is a sequence of operations that are executed by a database
management system (DBMS) to execute a query. It describes how the
query will be executed, including which tables will be accessed, which
indexes will be used, and how the data will be sorted and joined.

6. Execution Plan

The main difference between an execution plan and a physical plan is
that an execution plan is generated at runtime by the DBMS’s query
optimizer, while a physical plan is generated at design time by the database
developer.

7. UDFs

User-defined functions (UDFs) are functions that are defined by users
in a database management system (DBMS). They allow users to extend
the functionality of the DBMS by creating their own functions that can
be used in queries. UDFs can be used to perform complex calculations,
manipulate data, or perform other operations that are not supported by
the built-in functions of the DBMS.

8. TVFs

Table-valued functions (TVFs) are user-defined functions that return a
table as their result set. They can be used to encapsulate complex queries
and calculations that involve multiple tables or views. TVFs can be used
in the FROM clause of a SELECT statement just like a table or view.

9. LLP

LLP is the abbreviation of Learning from Label Proportion, which is a
weakly supervised classification problem. In LLP, data points are grouped
into bags, and the label proportions within each bag are observed instead
of the instance-level labels. For example, in a bag of 100 images, 80%
of them are labeled as “cat” and 20% as “dog”. The task is to learn a
classifier to predict the individual labels of future individual instances.

10. Differential Privacy

A mathematical framework that defines and provides privacy guarantees
for algorithms that access data

2

LIN Rui 

ruilin0212@gmail.com 

LIN Rui 

ruilin0212@gmail.com 

LIN Rui 

ruilin0212@gmail.com 

LIN Rui 

ruilin0212@gmail.com 

LIN Rui 

ruilin0212@gmail.com 

LIN Rui 

ruilin0212@gmail.com 

LIN Rui 

ruilin0212@gmail.com



11. ACID Transactions

A transaction is any operation that is treated as a single unit of work,
which either completes fully or does not complete at all, an leaves the
storage system in a consistent state. The classic example of a transaction
is what occurs when you withdraw money from your bank account. Either
the money has left your bank account, or it has not — there cannot be an
in-between state.

A - Atomicity: each statement in a transaction (to read, write, update
or delete data) is treated as a single unit. Either the entire statement is
executed, or none of it is executed. This property prevents data loss and
corruption from occurring if, for example, if your streaming data source
fails mid-stream.

C - Consistency: ensures that transactions only make changes to tables
in predefined, predictable ways. Transactional consistency ensures that
corruption or errors in your data do not create unintended consequences
for the integrity of your table.

I - Isolation: when multiple users are reading and writing from the same
table all at once, isolation of their transactions ensures that the concurrent
transactions don’t interfere with or affect one another. Each request can
occur as though they were occurring one by one, even though they’re
actually occurring simultaneously.

D - Durability: ensures that changes to your data made by successfully
executed transactions will be saved, even in the event of system failure.

12. Data Silos

A data silo is a collection of data held by one group that is not easily or
fully accessible by other groups in the same organization. Finance, ad-
ministration, HR, marketing teams, and other departments need different
information to do their work.

13. Petabytes

A petabyte is a multiple of a byte, which is the unit of storage size for
digital information. Since peta indicates multiplication by the fifth power
of 1,000, a petabyte is equal to one quadrillion (1,000,000,000,000,000)
bytes, 1,000,000 GBs, or 1,000 TBs. Nowadays, it is often used when
labeling network hard drives, total server farm capacity, or storage media
with large capacity.

14. First-Generation Data Lake

1. HDFS

2. AWS S3

Drawbacks: traditionally collected data into distributed storage systems,
and the unorganized collections of the data turned data lakes into “data
swamps”.

3

LIN Rui 

ruilin0212@gmail.com 

LIN Rui 

ruilin0212@gmail.com 

LIN Rui 

ruilin0212@gmail.com 

LIN Rui 

ruilin0212@gmail.com 

LIN Rui 

ruilin0212@gmail.com 

LIN Rui 

ruilin0212@gmail.com 

LIN Rui 

ruilin0212@gmail.com



15. Second-Generation Data Lake
1. Delta
2. Iceberg
3. Hudi
They strictly operate on top of standardized structured formats1 such as:
1. Parquet (Apache Parquet is an open-source, column-oriented data file
format designed for efficient data storage and retrieval. It provides effi-
cient data compression and encoding schemes with enhanced performance
to handle complex data in bulk. Parquet is available in multiple languages,
including Java, C++, Python, etc...)
2. ORC
3. Avro,
and provide features like time travel, ACID transactions, and schema evo-
lution.

16. Query Engine
1. Presto: Presto is an open-source SQL query engine that’s fast, reliable,
and efficient at scale. Use Presto to run interactive/ad hoc queries at sub-
second performance for your high-volume apps.
2. Athena: Amazon Athena is an interactive query service that makes it
easy to analyze data directly in Amazon S3 using standard SQL. With a
few clicks in the Amazon Web Services Management Console, customers
can point Athena at their data stored in S3 and begin using standard SQL
to run ad-hoc queries and get results in seconds.
3. Hive: Apache Hive is a data warehouse system built on top of Apache
Hadoop that facilitates easy data summarization, ad-hoc queries, and the
analysis of large datasets stored in various databases and file systems that
integrate with Hadoop. Hive offers a simple way to apply structure to large
amounts of unstructured data and then perform batch SQL-like queries
on that data.
4. Photon: Photon is the next generation engine on the Databricks Lake-
house Platform that provides extremely fast query performance at low
cost – from data ingestion, ETL, streaming, data science and interactive
queries – directly on your data lake.

17. Frameworks
1. Hadoop:
2. Spark:
3. Airflow:

18. Data Warehouse
1. Snowflake:
2. BigQuery:
3. Redshift:

1https://www.upsolver.com/blog/the-file-format-fundamentals-of-big-data

4

LIN Rui 

ruilin0212@gmail.com 

LIN Rui 

ruilin0212@gmail.com 

LIN Rui 

ruilin0212@gmail.com 

LIN Rui 

ruilin0212@gmail.com 

LIN Rui 

ruilin0212@gmail.com 

LIN Rui 

ruilin0212@gmail.com 

LIN Rui 

ruilin0212@gmail.com

https://www.upsolver.com/blog/the-file-format-fundamentals-of-big-data


4. Clickhouse:

19. Chunks
A chunk is the largest unit of physical disk dedicated to database server
data storage.

20. Scan Queries

Scan Queries is a separate data access interface designed primarily for
running analytical ad hoc queries against a DB.

21. Distributed Storage

Distributed storage is a software-defined storage system that enables ac-
cess to data. It includes hardware and software enabling a scale-out
distributed file system technology targeted at unstructured data growth.
Data can be split across various physical servers and multiple data centers.
It generally utilizes a cluster of storage units with synchronization and co-
ordination methods between nodes. Storing data in multiple computers
or in computers that are geographically dispersed is a form of distributed
storage.

22. Data Ingestion
Data ingestion is the process of moving data from various sources to a
destination where it can be accessed, used, and analyzed. The destination
can be a cloud data lake, cloud data warehouse, database, data mart, or
a document store. Data ingestion may or may not involve transformation
or manipulation of data during the process.

5

LIN Rui 

ruilin0212@gmail.com 

LIN Rui 

ruilin0212@gmail.com 

LIN Rui 

ruilin0212@gmail.com 

LIN Rui 

ruilin0212@gmail.com 

LIN Rui 

ruilin0212@gmail.com 

LIN Rui 

ruilin0212@gmail.com 

LIN Rui 

ruilin0212@gmail.com



2 Tensor Data Platform

Learning notes of Ref. [1].

2.1 Summary

1. Why

1) Problem to solve: Integrate relational and ML workloads. SQL can
be used as a higher-level abstraction or orchestrator between data opera-
tions and machine learning transforms.

2) Previous solutions:

- try to optimize the hand-off of data between separate ML and DB sys-
tems. → reduce the conversion time

- integrate ML as a UDF through an external specialized system, to ex-
press ML algorithms directly in SQL

3) Bottlenecks:

- ML is merely a guest in the relational house owned by the DBMS

- the existing methods poorly suited to handle non-relational data

- the existing methods miss out on the virtuous cycle among HW ven-
dors/OSS/ML academics/app developers that TCR engines enjoy

2. What

1) Proposed Methods: Tensor Data Platform (TDP), a database built
upon a tensor runtime, namely, PyTorch.

2) Advantages:

- TDP leverages PyTorch to run queries over structured and unstructured
data on a wide range of hardware devices.

- TDP integrates the flexibility of PyTorch’s programming model with the
declarative power of SQL.

- TDP leads to a hybrid ML-SQL experience that is appealing to database
users without forcing data scientists outside of their comfort zone.

- PyTorch in TDP allows trainable queries.

3) Performance:

Available functions:

6

LIN Rui 

ruilin0212@gmail.com 

LIN Rui 

ruilin0212@gmail.com 

LIN Rui 

ruilin0212@gmail.com 

LIN Rui 

ruilin0212@gmail.com 

LIN Rui 

ruilin0212@gmail.com 

LIN Rui 

ruilin0212@gmail.com 

LIN Rui 

ruilin0212@gmail.com



- ML within SQL: UDF-based programming model. Use UDFs/TVFs to
parse unstructured data into a structured representation (cf. Example 3.1,
use UDF to get the Digit & Size tables).

- SQL within ML: Embedding queries in PyTorch programs.

- Trainable query (cf. Example 3.2).

- Multi-modal queries (cf. Figure 2, search for the images and the infor-
mation in the receipts).

- SQL queries over OCRed documents (cf. Listing 8, extract the informa-
tion in the image and then use SQL to do query).

- Learning from Label Proportions (LLP).

- Learning to answer queries over images.

Compare with others:

- Faster on GPU (cf. Figure 2 (right))

- No conversion time (cf. Figure 3 (left))

- More efficient training (cf. Figure 3 (right))

- Better generalization

3. How

- Storage: store relational data in a columnar format. TDP accepts
input data in different formats. When data is registered into TDP, it is
first transformed into a tensor and subsequently encoded. Data can be
stored both on the CPU and GPU.

- Data Encoding: TDP does not use PyTorch tensor directly, but rather
provides its own encoded tensor abstraction.

- Query Processor:

1) Sparks/Substrait can generate the physical plan,

2) TDP can compile each physical operator in the physical plan to PyTorch
models

3) TDP has a mapping dictionary (maybe physical operator → PyTorch
APIs)

4) For a physical operator, there may exist several mappings

4. Limitations

1) It is still heuristics to pick which PyTorch implementation is used to
deploy each physical operator.

2) The supported ML algorithms are still limited in TDP.

7

LIN Rui 

ruilin0212@gmail.com 

LIN Rui 

ruilin0212@gmail.com 

LIN Rui 

ruilin0212@gmail.com 

LIN Rui 

ruilin0212@gmail.com 

LIN Rui 

ruilin0212@gmail.com 

LIN Rui 

ruilin0212@gmail.com 

LIN Rui 

ruilin0212@gmail.com



3 Deep Lake

Learning notes of Ref. [2].

3.1 Summary

1. Why

1) Problem to solve: Design a lakehouse that can support large-scale,
complex, and unstructured datasets (e.g., CoCo (330K images), ImageNet
(1.2M images), Oscar (multilingual text corpus)) used for deep learning
workflows.

2) Previous solutions and bottlenecks:

Complex Data Types in a Database

• Databases are not optimized for storing and serving large files and
can cause performance issues.

• Binary data does not fit well into a database’s structured format, mak-
ing it difficult to query and manipulate. Storing large amounts of
binary data in a database can be more costly than other storage
solutions.

Complex Data Along with Tabular Formats

• Tabular formats extended for deep learning, such as Petastorm or
Feather, have yet to gain wide adoption.

Object Storage for Deep Learning

• Current cloud-native choices for storing large unstructured datasets
have four drawbacks:
a) they introduce significant latency overhead,
b) unstructured data ingestion without metadata control can produce
“data swamps”,
c) object storage has built-in version control, which is rarely used in
data science workflow, and
d) data on object storage gets copied to a virtual machine before
training, thus resulting in storage overhead and additional costs.

Second Generation of Data Lakes

• The second-generation data lakes are still bound by the limitations
of the inherent data formats to be used in deep learning.

2. What

1) The proposed method: Deep Lake is designed to help deep learning
workflows run as seamlessly as analytical workflows run on Modern Data

8

LIN Rui 

ruilin0212@gmail.com 

LIN Rui 

ruilin0212@gmail.com 

LIN Rui 

ruilin0212@gmail.com 

LIN Rui 

ruilin0212@gmail.com 

LIN Rui 

ruilin0212@gmail.com 

LIN Rui 

ruilin0212@gmail.com 

LIN Rui 

ruilin0212@gmail.com



Stack (MDS).

2) Advantages:

• Fast data ingestion speed → Ingesting 10000 images from FFHQ
dataset from different format, Deep Lake has the best performance.

• Fast iteration speed of images against other dataloaders.

• More efficient streamable dataloader from different locations (e.g.,
Local, AWS S3, MinIO).

• Faster training on the cloud.

• Allow distributed training of a large multi-modal dataset with high
GPU utilization.

• Version control.

• Visualization of tensors.

• Tensor Query Language.

3. How

Deep Lake extends the second generation of data lake capabilities for deep
learning use cases by rethinking the format and upstream features, includ-
ing querying, visualization, and native integration, to keep learning frame-
works to complete the ML lifecycle.

Tensor Storage Format:

(a) Deep Lake datasets follow columnar storage architecture, with ten-
sors as columns.

(b) Tensors can contain dynamically shaped arrays, also called ragged
tensors.

(c) Htype (e.g., image, video, audio, bbox, dicom, etc.) defines the ex-
pectations on samples in a tensor such as data type, shape, number
of dimensions, or compression.

(d) Deep Lakes chunks are constructed based on the lower and upper
bound of the chunk size to fit a limited number of samples.

(e) Deep Lake implements an on-the-fly re-chunking algorithm to opti-
mize the data layout. One of the key access patterns of it is shuffled
stream access for training machine learning models.

(f) Deep Lake can be plugged into any storage provider.

4. Limitations

(a) The storage format does not support custom ordering for an even
more efficient storage layout required for vector search or key-value
indexing.

9

LIN Rui 

ruilin0212@gmail.com 

LIN Rui 

ruilin0212@gmail.com 

LIN Rui 

ruilin0212@gmail.com 

LIN Rui 

ruilin0212@gmail.com 

LIN Rui 

ruilin0212@gmail.com 

LIN Rui 

ruilin0212@gmail.com 

LIN Rui 

ruilin0212@gmail.com



(b) Deep Lake implements branch-based locks for concurrent access. Sim-
ilar to Delta ACID transaction model, Deep Lake can be extended
to highly-performant parallel workload.

(c) The current implementation of TQL only supports a subset of SQL
operations.

10

LIN Rui 

ruilin0212@gmail.com 

LIN Rui 

ruilin0212@gmail.com 

LIN Rui 

ruilin0212@gmail.com 

LIN Rui 

ruilin0212@gmail.com 

LIN Rui 

ruilin0212@gmail.com 

LIN Rui 

ruilin0212@gmail.com 

LIN Rui 

ruilin0212@gmail.com



References

[1] A. Gandhi, Y. Asada, V. Fu, A. Gemawat, L. Zhang, R. Sen, C. Curino,
J. Camacho-Rodŕıguez, and M. Interlandi, “The tensor data platform: To-
wards an ai-centric database system,” 2022.

[2] S. Hambardzumyan, A. Tuli, L. Ghukasyan, F. Rahman, H. Topchyan,
D. Isayan, M. McQuade, M. Harutyunyan, T. Hakobyan, I. Stranic, and
D. Buniatyan, “Deep lake: a lakehouse for deep learning,” 2022.

11

LIN Rui 

ruilin0212@gmail.com 

LIN Rui 

ruilin0212@gmail.com 

LIN Rui 

ruilin0212@gmail.com 

LIN Rui 

ruilin0212@gmail.com 

LIN Rui 

ruilin0212@gmail.com 

LIN Rui 

ruilin0212@gmail.com 

LIN Rui 

ruilin0212@gmail.com


	Basic Concepts
	Tensor Data Platform
	Summary

	Deep Lake
	Summary




